If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-5=39
We move all terms to the left:
X^2+4X-5-(39)=0
We add all the numbers together, and all the variables
X^2+4X-44=0
a = 1; b = 4; c = -44;
Δ = b2-4ac
Δ = 42-4·1·(-44)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{3}}{2*1}=\frac{-4-8\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{3}}{2*1}=\frac{-4+8\sqrt{3}}{2} $
| 67-n=49 | | 4(y-1)=2(y+4) | | 12,7/x=10 | | (x+4)^1/2=(6x+19)^0.25 | | 0=1-0.050x | | 4(x+2)-6x+38=10(2x+1) | | 4+tt=0.5 | | 3(x+4)+x=-4 | | 4^x+10*2^x-24=0 | | 4t+3(2t)=8 | | 2(3-a)=0 | | 2(a-5)=4 | | 1.2x+3.4=1.06 | | 90+(15x)+(2x+5)=180 | | 7x17-5=3x17+12 | | 4x=63−3x | | 5X=8X/9y | | 5p^-3=8×5^-2 | | (2(6x+1))+(2(4x-11))=180 | | X^4-3x^2+2x+1=0 | | (4x-11)=(4x+11) | | (2x+3)=69 | | 2x-43=4(2x+1)-5 | | -39=3(3x-1)+9 | | 2a+3=5a-2+3a-7 | | 20x+2x=30 | | 5(4x-4)-8=-2x-6 | | 3(4x-3)=4x+7 | | 4(2x+2)-3=-5x-34 | | 9x-29=-92 | | 9x+22=4x-3 | | x-13=2x-22 |